

MATLAB实验教程与条例分析

内蒙古财经大学统计与数学学院 主讲:吕喜明 E-mail: lvximing@vip.163.com

实验环境的创建

▶ <u>第一部分</u> MATLAB R2013a的安装、 激活与启动

▶ 第二部分 Microsoft Office 2013的安
装

》 <u>第三部分</u>实验环境Notebook的创建

<mark>≥ <u>第四部分</u>实验小结</mark>

预备实验

一、MATLAB R2013a的安装、激 活与启动

1.1 MATLAB R2013a的安装

第1步:下载Matlab2013a,并用Winrar解 压到Matlab2013a文件夹中;

第2步:双击setup.exe,开始安装;

第3步:选择"不使用Internet安装",下 一步;

1.1 MATLAB 2013a的安装

1.1 MATLAB 2013a的安装

▲ 许可协议
The MathWorks, Inc. Software License Agreement
IMPORTANT NOTICE
READ THE TERMS AND CONDITIONS OF YOUR LICENSE AGREEMENT CAREFULLY BEFORE COPYING, INSTALLING, OR USING THE PROGRAMS OR DOCUMENTATION.
THE LICENSE AGREEMENT TOGETHER WITH ANY APPLICABLE ADDENDUM REPRESENTS THE ENTIRE AGREEMENT BETWEEN YOU (THE "LICENSEE") AND THE MATHWORKS, INC. ("MATHWORKS") CONCERNING THE PROGRAM(S) AND DOCUMENTATION.
BY COPYING, INSTALLING, OR USING THE PROGRAMS AND DOCUMENTATION, YOU ACCEPT THE TERMS OF THIS AGREEMENT. IF YOU ARE NOT WILLING TO DO SO, DO NOT COPY, INSTALL, OR USE THE
是否接受许可协议的条款? ◎ 是(Y) ◎ 否(O)
< 返回 下一步 > 取消 帮助 🕠 MathWorks・
上页 下页

1.1 MATLAB 2013a的安装

▲ 安装完成	
安装已完成。	MATTAR'
☑ 激活 MATLAB	SIMULINK*
注意: 在激活 MATLAB 之前无法使用该软件。	R2013a
要了解有关激活的详细信息,请参阅 <mark>帮助</mark> 。	
< 返回 下一步 >	🕅 📣 MathWorks

1.2 MATLAB 2013a的激活

1.2 MATLAB 2013a的激活

1.3 MATLAB 2013a的启动

Note Anti Description Description Point State Poin	A MATLAB R2023e	and the second se	0.0
Image: Section of the sec	HONE INCES APPE		Leench Dostymentation 🖉 🖬
the last and the set of the	Lange Carlos Antonio Carlos Ca	Straw Variable Analyze Code Image: Code	
Converse Finder Converse Window Name Image: Converse Window Image: Converse Window Image: Converse Window </td <td>🗇 🖶 🛅 🗿 🞍 + Dt + Program Files + MATLA</td> <td>8 + R2013a + bin +</td> <td>• P</td>	🗇 🖶 🛅 🗿 🞍 + Dt + Program Files + MATLA	8 + R2013a + bin +	• P
Nerve = Image: Nerve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Nerve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statted. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statter. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statter. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statter. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting Statter. Nerve = Value Image: Norve to MATLABY Watch this Video, see Examples, or read Getting To Te	Current Folder (8)	Command Window 8	Workspace (8)
A miliopinty A miliopinty A miliopinty A di <pa di<="" p=""> A di A di <pa di<="" p=""> A di <pa <="" di<="" td=""><td>Name =</td><td>New to MATLABT Watch this Video, see Exemples, or read Getting Started.</td><td>Name - Value</td></pa></pa></pa>	Name =	New to MATLABT Watch this Video, see Exemples, or read Getting Started.	Name - Value
1/8- 2013/0/5 21:28 -8	 reginty vil vintype ini kotnaami kotnaami<td></td><td>Command History 251/14/13 21:428 211/14/14 21:538 211/14/14 21:538 211/14/14 21:538 </td>		Command History 251/14/13 21:428 211/14/14 21:538 211/14/14 21:538 211/14/14 21:538

二、Microsoft Office 2013的安装

三、实验环境Notebook的创建

3.1 Notebook的安装与启动 在正确安装了MATLAB R2013a和Microsoft Office 2013 机器上,安装NOTEBOOK主要 有以下两种模式:

模式1 命令窗口安装 模式2 模板文件启动模式

启动Matlab后,在命令窗口运行函数命令 notebook,如图

A MATLAS R20136		
HOME PLOTS	Arrs Arrs Arrs State Sta	Search Documentation
New New Open Compare Script Prid	Import Save Open Variable Import Analyze Code Import Save Open Variable Import Save Open Variable Import Save Import Import Save Import	Community Plaquest Support QUADSONS * MICLACIES
💠 🕸 🔃 🐌 D: + Progr	am Files + MATLAB + R2013a + bin +	م •
Current Folder	Command Window 🕥	Workspace 🛞
 Name + Intergistry registry registry vol win32 deploytool.bat dis_Close.mat dis_Close.mat dis_Close.mat dis_close.mat distrope.ini lodata.wel lodata.wel lodata.wel lodata.wel lodata.wel matiab.bat matiab.bat matiab.mat mbuild.bat mec.bat MemSheidStarter.bat mex.bat mex.bat mex.bat 	J¢ >> notebook	Name - Value • • • • • • • • • • • • • • • • • • •
Details	~	(
Ready		

🔯 🖯 5× 🗸 🗅 🗟 🥰 🚔 :	;	文档1 [兼容模式] - Word	? 🖻 – 🗗 🗙
文件 开始 插入 设计 页面	市局 引用 邮件 审阅 视图 MathType	加载项 CNKI E-Learning	登录 🔾
Notebook - 5k About MA	TLAB Notebook		
⊿a New MATLAB Notebook			
∮ 特殊符号			
菜单命令			*
	ł		
		r -	
第1页,共1页 0个字 口》中文(中国)			∎ ∎o - — + 100%

模式2 模板文件启动模式

进入MATLAB R2013a的安装位置X:\Program Files\MATLAB\R2013a\ notebook\pc,双击Microsoft Word 模板文件M-BOOK

件(F) 编辑(E) 查看(V)	工具(T) 報助(H)				
目织 ▼ 包含到库中 ▼	共享 = 封录 新建文件夹)II • []	
2 收藏夹	名称	修改日期	英型	大小	
16 下號	M-BOOK	2012/11/5 18:19	Microsoft Word	293 KB	
画 桌面	🚮 Readme	2010/5/13 12:14	Microsoft Word	32 KB	
12 最近访问的位置	🚮 sigproc	2000/7/28 9:33	Microsoft Word	76 KB	
7 1					
🔡 视频					
N 2015 1					
文档					
🚽 音乐					
🖏 \$1219					
🌉 计算机					
🏭 本地磁盘 (C:)					
LENOVO (D:)					
🕞 本地磁盘 (E:)					

模式2 模板文件启动模式

进入MATLAB R2013a的安装位置X:\Program Files\MATLAB\R2013a\

notebook\pc,双击Microsoft Word 模板文件M-BOOK

📲 🗔 🐬 🗗 🗅 🗟 🥰 🖬 🕫		文档1	[兼容模式] - Word	? 🗷 – 🗗 🗙
文件 开始 插入 设计 页面	布局 引用 邮件 审阅	视图 MathType 加载项	CNKI E-Learning	要要 🔍
Notebook - 🖧 About MAT	LAB Notebook			
പ്പ് New MATLAB Notebook				
• 特殊符号				
采単即令				<u>^</u>
	r			
				_
第1页,共1页 0个字 [P] <u>中文(中国)</u>				
				上页下页

3.2 Notebook的使用指令

🔮 🖯 🏷 🕐 🗋 🛱 🤗	— =			文档1 [兼容模式] - Word	? 🖻 – 🗗 🗙
文件 开始 插入 设计	页面布局 引用	邮件 审阅 视图	MathType	加载项 CNKI E-Learning	登录 🔍
Notebook - 🖧 Abo	ut MATLAB Notebook				
Define Input Cell					
Define <u>A</u> utoInit Cell					
Define Calc <u>Z</u> one					
<u>U</u> ndefine Cells		L			
Purge Selected Output Cells		۴			
<u>G</u> roup Cells					
U <u>n</u> group Cells					
Hide <u>C</u> ell Markers					
Toggle Graph Output for Cell					
Evaluate <u>C</u> ell					
<u>E</u> valuate Calc Zone					
Evaluate <u>M</u> ATLAB Notebook					
Evaluate <u>L</u> oop	_				
Bring MATLAB to Front					
Notebook Options					
					0K/s / 6%
					_
第 <u>1</u> 页,共1页 0个字 🖸 中文	(中国)				 100%
					🎬 🖗 🋱 🔺 📇 🤝 📴 🌗 📶 🤮 14:15 📕

Notebook菜单功能

菜单项。	功能。
Define Input Celle	定义输入细胞→
Define AutoInit Cell+	定义自活细胞。
Define Calc Zone↔	定义计算区。
Undefine Cells®	将细胞转为文本↩
Purge Selected Output Cells₽	从所选篇幅中删除所有输出细胞↩
Group Cells₽	生成细胞群↩
Ungroup Cells₽	将细胞群转换为输入细胞 <u>或自活细胞</u> ↩
Hide(Show) Cells Markers@	隐藏(显示)生成细胞的中括号↩
Toggle Graph Output for Cell ²	是否嵌入生成图形。
Evaluate Cell.	运行输入细胞↩
Evaluate Calc Zone	运行 <u>计算区</u> ₀
Evaluate M-book₽	运行整个 M-book 中的所有输入细胞↔
Evaluate Loop₽	多次运行输入细胞↩
Bring MATLAB to Front+	将 MATLAB 命令窗口调到前台↩
Notebook Options	设置数值和图形输出格式↩

附录 常用函数介绍

✓1.指数和对数函数: exp(x), sqrt(x), log(x), log10(x);✓2.三角和反三角函数: $sin(x),cos(x),tan(x),cot(x),asin(x),atan(x),\cdots;$ ✓3.统计用函数: max(x),min(x),sum(x);✓4.计算两个向量的内积与外积: dot(a,b) ,cross(a,b); √5.求绝对值: abs(x).

3.3 Notebook的用法举例

例1 计算[12+2×(7-4)]÷3²的值 用键盘在MATLAB指令窗中输入以下内容: >>(12+2*(7-4))/3^2 回车达到如下结果:

ans = 2

例2 求高次方程 $x^4 + 7x^3 + 9x - 20 = 0$

的根。

3.3 Notebook的用法举例

例2 求方程 $x^4 + 7x^3 + 9x - 20 = 0$ 的全部根。 MATLAB程序: Click

p=[1,7,0,9,-20]; %建立多项式系数向量 x=roots(p) %求根

📣 HATLAB	<u>_ 8 ×</u>
<u>File Edit Debug D</u> esktop <u>W</u> indow <u>H</u> elp	
🗅 🧀 👗 ங 🛍 🗠 🖙 🎁 💅 🦻 Current Directory: C:'MATLAB7\work 💽] 🔁	
Shortcuts 🗃 How to Add 📑 What's New	
	_
// >> n=[1,7,0,9,-20]: %建立客项式系数向量	
x=roots(p) %求根	
x =	
-7. 2254	
-0.4286 + 1.5405i	
-0.4286 - 1.5405i	
1.0826	
>> >> >> >> >> >> >> >> >> >> >> >> >>	
\rightarrow	
>>	
>>	
>>	
>>	
>>	
>>	
>>	
>>	
	v

.

-7.2254 -0.4286 + 1.5405i -0.4286 - 1.5405i 1.0826

例3 $E[0,2\pi]$ 上以默认格式绘制 y = sin(tan(x))的图形.

例3 在 $[0,2\pi]$ 上以默认格式绘制 y = sin(tan(x))的图形.

MATLAB程序: x=0:0.01:2*pi; y=sin(tan(x)); plot(x,y)

例4 绘制
$$z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$
 在 [-7, 7; -7, 7] 上的三维网格图.

例4 绘制
$$z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$
 在[-7,7;-7,7]上的三维网格图.

x=-7:0.1:7; y=-7:0.1:7; [X,Y]=meshgrid(x,y); Z=sin(sqrt(X.^2+Y.^2))./sqrt(X.^2+Y.^2); mesh(X,Y,Z)

例4 绘制
$$z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$
 在 [-7, 7; -7, 7]上的三维网格图.

x=-7:0.1:7; y=-7:0.1:7; [X,Y]=meshgrid(x,y); Z=sin(sqrt(X.^2+Y.^2))./sqrt(X.^2+Y.^2); mesh(X,Y,Z)

把MATLAB和Word结合,充分利用两者的优 点,实现软件的"强强联合", 会给我们在 撰写科技报告,论文、专著以及电子教案时 提供了很大的方便,程序、计算结果以及仿 真出的图形都可以同时在Word文档中,并且 可以随时修改计算命令,随时计算并绘制图 形.Notebook环境将是我们这本书统一的实 验平台, 请读者自行安装并调试.

实验一(1) 基于MATLAB的二维基本绘图

▶ 第一部分 实验目的 🖌 第二部分 实验原理 》第三部分 实验内容 ▶ 第四部分 实验过程 》第五部分 实验小结 ➢ 第六部分 实验报告

掌握MATLAB二维绘图命令plot的使用方法;
 掌握二维绘图基本元素的属性控制;
 掌握二维绘图的一般步骤;
 掌握二维图形标题与注释的添加;
 掌握特殊二维图形的绘制.

MATLAB作图基本原理就是描点绘图, 即在给定的区间上按照指定的步长产生一系 列的关于自变量x与因变量y的数据点,然后 连点成线.通常步长愈小,产生的数据点就愈 多,绘出的函数图形就愈加光滑细腻,常见的 二维绘图命令包括plot、fplot、ezplot等基本 绘图命令及stem、stairs等特殊绘图命令,本 实验中仅以plot为基本绘图命令,着重讲解 MATLAB二维绘图的一般方法及步骤.

2.1 基本二维绘图命令plot及调用格式

表1-1 plot命令的调用格式及功能描述

调用格式	功能描述
plot(x)	向量绘图
plot(x,y)	默认格式(蓝色实线)单窗口单曲线绘图
plot(x,y,'cs')	自定义格式单窗口单曲线绘图,c颜色,s线型
plot(x1,y1,x2,y2,)	默认格式(蓝色实线)单窗口多曲线绘图
plot(x1,y1,'cs1',x2,y2,'cs2',)	自定义格式单窗口多曲线绘图
<pre>subplot(m,n,p),plot(xp,yp,'cs')</pre>	子图分割并绘图,其中m、n分别代表子图窗口的
	行和列, p代表子图序号

2.2 图形属性的控制

表1-2 plot绘图函数自定义格式参数表

s: 样式的设置参数			c: 颜 色认	G置参数	
线型	说明	点标	说明	颜色	说明
_	实线(默认)	+	加号	r	红色
:	虚线	0	空心圆	20	绿色
	点虚线	*	星号	b	蓝色(默认)
:.	点划线	٠	点号	С	青色
	波折线	Х	叉号	m	品红
		S	正方形	У	黄色
		d	菱形	k	黑色
		^	上三角形	W	白色
		V	下三角形		
		>	右三角形		
		<	左三角形		
		р	五角星		
		h	六边形		

2.3 图形的标题与注释

表1-3 图形标注的常用命令及功能描述

调用格式	功能描述
title('图形标题')	给图形加标题
xlabel('x轴名称')	给x轴加标注
ylabel('y轴名称')	给y轴加标注
legend('图例名称')	添加图例
gtext('文字注释')	用鼠标自助模式在图中任意位置
	添加注释
grid on(off)	打开(关闭)坐标网格线
axis on(off)	打开(关闭)坐标轴的刻度
hold on(off)	启动(关闭)图形保导动能型

2.4 二维绘图的一般步骤

Step 1(必选) 输入自变量x的区间及间距,产生自变量坐标向量

通常有如下两种输入方式

1) x=[a:c:b] %在[a,b]上以c为步长(跳跃间隔)产生数据点构成自变量坐标向量.

2) x=linspace(a,b,n)%在[a,b]上等距产生n个数 据点构成自变量坐标向量.

Step 2(必选) 输入函数表达式,产生应变量坐标向量 y=f(x)

Step 3(必选) 键入默认格式或自定义格式绘图命令
plot(x,y)或plot(x,y,'cs')

2.4 二维绘图的一般步骤

Step 4 (可选) 键入标题及注释加注命令 title('图形标题') xlabel('x轴名称') ylabel('y轴名称') legend('图例名称') gtext('文字注释') Step 5 (可选) 打开(关闭) 开关函数 grid on(off) axis on(off)

三、实验内容

例1 在[0, 2π]上以默认格式绘制 y=sin(tan(x))的图形.

例2 在[-π, π]上用蓝色、实线和星号点标绘制 y=tan(sin(x))-sin(tan(x))的图形,并加 注标题和坐标轴等.

例 3 在[-2π, 2π]上用紫色、波折线和五角星点标绘制作的图 y=x³sin(x)cos(x),并加 注标题和坐标轴等.

3.2 单窗口多曲线绘图

例4 在同一个窗口于[0, 2π]上以自定义格式绘制 $y_1 = \sin(2x)$, $y_2 = e^{-x}$ 的图形,并给出 图例及相关标注.

3.3 子图窗口绘图

例 5 在子图窗口于[0, 2π]上分别用你喜欢的颜色和线型绘制 sin(x), cos(x)和 e^x 图形.

四、实验过程

■ 4.1单窗口单曲线绘图

例1 在[0, 2π]上以默认格式绘制y=sin(tan(x))的图形 Notebook环境下的程序代码及运行结果如下:

```
x=0:0.01:2*pi;
```

```
y=sin(tan(x));
```

plot(x,y)

例2 在 $[-\pi, \pi]$ 上用蓝色、实线和星号点标绘制y=tan(sin(x))sin(tan(x))的图形,并加注标题和坐标轴等. Notebook环境下的程序代码及运行结果如下: x=-pi:0.01:pi; y=tan(sin(x))-sin(tan(x)); $plot(x,y,'b^{*-'})$ title ('y=tan(sin(x))-sin(tan(x))') xlabel('x'),ylabel('y')

例3 在 $[-2\pi, 2\pi]$ 上紫色、波折线、五角星点标绘制作 $y = x^3 \sin(x) \cos(x)$ 的图形, 并加注标题、坐标轴等...

Notebook环境下的程序代码及运行结果如下:

x=-2*pi:0.1:2*pi; y=x.^3.*sin(x).*cos(x); plot(x,y,'mp--') title ('y=x^3*sin(x)*cos(x)') xlabel('x'),ylabel('y')

注: 当函数表达式里出现 "*", "/", "^" 时, 必须在该符号前加 "." 才能完成 坐标向量的生成,否则会出现如下报错:

??? Error using 🗛
Inputs must be a scalar and a square matrix.
To compute elementwise POWER, use POWER () instead.

4.2单窗口多曲线绘图

例 4 在同一个窗口于[0,2 π]上以自定义格式绘制 $y_1 = \sin(2x)$, $y_2 = e^{-x}$ 的图形, 并给出图例及相关标注...

```
x=linspace(0,2*pi,100);
y1 = sin(2*x);
y2=exp(-x);
plot(x,y1,'bp-',x,y2,'ro--');
title ('sin(2*x) and exp(-x)的图形')
legend ((sin(2x)', exp(-x)'))
xlabel('x'),ylabel('y')
grid off
axis on
```


4.2单窗口多曲线绘图

4.3子图窗口绘图

例5 在子图窗口于 $[0,2\pi]$ 上分别用你喜欢的颜色和线型绘制sin(x), cos(x) 和

e^x 图形↓

Notebook环境下的程序代码及运行结果如下:

x=0:pi/100:2*pi;

y1=sin(**x**);

y2=cos(x);

y3=exp(x);

subplot(1,3,1);plot(x,y1,'bp')
subplot(1,3,2);plot(x,y2,'k*')
subplot(1,3,3);plot(x,y3,'ro')

4.3子图窗口绘图

例5 在子图窗口于 $[0,2\pi]$ 上分别用你喜欢的颜色和线型绘制sin(x), cos(x) 和

e^x 图形↓

五、实验小结

1. 限于篇幅本实验仅对基本绘图命令plot的用 法进行了介绍和演示,对于fplot,ezplot的用 法请读者自行了解与掌握;

2. 对于输入含有 "*", "/", "^"的函数表达式时,读者切记在这些符号前加 ".",以表示向量间的运算;

五、实验小结

- 3.在程序语句的末尾添加 ";"可以隐藏该语句 的运行结果,若在作图过程中出现了大量的不 必要的数据,可在相应程序语句末尾添加 ";" 进行隐藏;
- 4.当程序运行过程中,出现图形错位或类似异常情况时,可在程序首句加入"clf"或"clear",进行画板清除重新绘图.

六、练习实验

实验报告一(1) 基于MATLAB的二维基本绘图

实验一 基于MATLAB的二维平面绘图

▶ 第一部分 实验目的 у 第二部分 实验原理 》第三部分 实验内容 ▶ 第四部分 实验过程 ✗ 第五部分 实验小结 ▶ 第六部分 实验报告

一、实验目的

- 1. 掌握特殊二维图形的绘制;
- 2. 掌握二维高级图形的叠加。

MATLAB作图基本原理就是描点绘图, 即在给定的区间上按照指定的步长产生一系 列的关于自变量x与因变量y的数据点,然后 连点成线.通常步长愈小,产生的数据点就愈 多,绘出的函数图形就愈加光滑细腻.常见的 特殊绘图命令包括stem、stairs、polar等.

MATLAB常见特殊二维图形的绘图命令及功能

命令	功能	命令	功能
stem	火柴杆图	pie	饼图
stairs	阶梯图	feather	羽毛图
area	填充图	bar	垂直条形图
barh	水平条形图	comet	彗星图
errorbar	误差棒图	scatter	散射图
polar	极坐标图	plotmatrix	分散矩阵绘制
fill	多边形填充	compass	矢量图
hist	柱形图	quiver	向量场图
gplot	拓扑图	rose	柱状图

常见统计图的MATLAB命令及调用格式

调用格式	功能描述
bar (y)	为每一个y中的元素画一个条状
bar (x,y)	在指定的横坐标x上画出y
bar (,'bar_color')	'bar_color'定义条的颜色
bar(,'grouped')	使同一组直方条紧紧靠在一起
bar(,'stacked')	把同一组数据描述在一个直方条上
barh ()	绘制水平条形图,其用法与bar一样
pie(x)	以默认格式绘制饼图
pie(x,explode)	以自定义突出格式显示饼图,explode为控制向量

三、实验内容

3.4 特殊图形的绘制。

例6 在 $\left[-\pi,\pi\right]$ 上绘制 $y = \tan\left(\sin\left(x\right)\right) - \sin\left(\tan\left(x\right)\right)$ 的火柴杆图.

例7 在 $[-\pi,\pi]$ 上绘制 $y = \tan(\sin(x)) - \sin(\tan(x))$ 的阶梯图.

- **例8** 绘制 $r = \cos(\theta) \sin(\theta)$ 的极坐标图.
- **例9** 绘制 $r = \cos(\theta) + i\sin(\theta)$ 的矢量图.

四、实验过程

例6 在 $\left[-\pi,\pi\right]$ 上绘制 $y = \tan\left(\sin\left(x\right)\right) - \sin\left(\tan\left(x\right)\right)$ 的火柴杆图.

Notebook环境下的程序代码及运行结果如下: x=-pi:pi/20:pi; y=tan(sin(x))-sin(tan(x)); stem(x,y) title ('y=tan(sin(x))-sin(tan(x))的火柴杆图')

4.4 特殊图形的绘制

例6 在 $[-\pi,\pi]$ 上绘制 $y = \tan(\sin(x)) - \sin(\tan(x))$ 的火柴杆图.

4.4 特殊图形的绘制

例7 在 $[-\pi,\pi]$ 上绘制 y = tan(sin(x)) - sin(tan(x))的阶梯图.

Notebook环境下的程序代码及运行结果如下: x=-pi:pi/20:pi; y=tan(sin(x))-sin(tan(x)); stairs(x,y) title ('y=tan(sin(x))-sin(tan(x))的阶梯图')

4.4 特殊图形的绘制

例7 在 $[-\pi,\pi]$ 上绘制 $y = \tan(\sin(x)) - \sin(\tan(x))$ 的阶梯图.

- 4.4 特殊图形的绘制
 - $\mathbf{M8}$ 绘制 $r = \cos(\theta) \sin(\theta)$ 的极坐标图.

Notebook环境下的程序代码及运行结果如下: clf

```
theta=0:pi/50:2*pi;
r=sin(theta).*cos(theta);
polar(theta,r,'-*');
title ('r=sin(theta).*cos(theta)的极坐标图')
```


4.4 特殊图形的绘制

例8 绘制 $r = \cos(\theta) \sin(\theta)$ 的极坐标图.

- 4.4 特殊图形的绘制
 - **例9** 绘制 $r = \cos(\theta) + i\sin(\theta)$ 的矢量图.
 - Notebook环境下的程序代码及运行结果如下: theta=linspace(0, 2*pi, 20); r = cos(theta)+i*sin(theta); compass(r); title ('r = cos(theta)+i*sin(theta)的矢量图')

4.4 特殊图形的绘制

例9 绘制 $r = \cos(\theta) + i\sin(\theta)$ 的矢量图.

4.4 特殊图形的绘制

例10将某个毕业班的毕业生走向用饼图绘制。

Notebook环境下的程序代码及运行结果如下: x = [15 35 10 2];%毕业生人数 explode = [1 0 0 0];%突出显示控制向量 pie(x,explode); title('毕业生去向'); Legend('国家单位','私营企业','读研','待业');

4.4 特殊图形的绘制例10 将某个毕业班的毕业生走向用饼图绘制。

56%

4.4 特殊图形的绘制

例10将某个毕业班的毕业生走向用饼图绘制。

Notebook环境下的程序代码及运行结果如下:

- x = [15 35 10 2];%毕业生人数
- explode = [1000];%突出显示控制向量
- pie(x,explode);
- title('毕业生去向');
- legend('国家单位','私营企业','读研', '待业','Location','Best');
- %详见https://blog.csdn.net/Maxiao1204/article/details/53132406

4.4 特殊图形的绘制例10 将某个毕业班的毕业生走向用饼图绘制。

81 - E	
	国家单位
	私营企业
4	读研
	待业

56%

4.4 特殊图形的绘制

例11 在[-2,2] 上绘制y=[6 8 7 4 5;4 8 1 12 0;4 6 21 1 3]的各种条形图。

Notebook环境下的程序代码及运行结果如下:

x=-2:2;

```
y=[6 8 7 4 5;4 8 1 12 0;4 6 21 1 3];
```

subplot(2,2,1),bar(x,y','stacked'); %因为y是3*5的矩阵,所有必须转置 才能使x的长度与y矩阵的行数一样, 'stacked'把数组在一个条形图 上显示。

xlabel('x'),ylabel('\Sigma y');

legend('数据1','数据2','数据3');

subplot(2,2,2),bar(x,y','grouped'); %'grouped',使同一组直方条紧紧靠 在一起.

xlabel('x'),ylabel('y');

legend('数据1','数据2','数据3');

4.4 特殊图形的绘制

例11 在[-2,2] 上绘制y=[6 8 7 4 5;4 8 1 12 0;4 6 21 1 3]的各种条形图。

Notebook环境下的程序代码及运行结果如下:

subplot(2,2,3),barh(x,y','stacked'); %barh,绘制水平条形图,其他参数 与bar一样,'stacked'把数组在一个条形图上显示。

xlabel('x'),ylabel('\Sigma y');

legend('数据1','数据2','数据3');

subplot(2,2,4),barh(x,y','grouped'); %'grouped',使同一组直方条紧紧 靠在一起,barh,绘制水平条形图,其他参数与bar一样.

xlabel('x'),ylabel('y');

legend('数据1','数据2','数据3');

4.4 特殊图形的绘制

例10 在[-2,2] 上绘制y=[68745;481120;4621 13]的各种条形图。 Notebook环境下的程序代码运行结果如下:

五、实验小结

1. 限于篇幅本实验仅对基本绘图命令plot的用 法进行了介绍和演示,对于fplot,ezplot的用 法请读者自行了解与掌握;

2. 对于输入含有 "*", "/", "^"的函数表达式时,读者切记在这些符号前加 ".",以表示向量间的运算;

五、实验小结

- 3.在程序语句的末尾添加 ";"可以隐藏该语句 的运行结果,若在作图过程中出现了大量的不 必要的数据,可在相应程序语句末尾添加 ";" 进行隐藏;
- 4.当程序运行过程中,出现图形错位或类似异常情况时,可在程序首句加入"clf"或"clear",进行画板清除重新绘图.

六、练习实验

见实验报告一(2) 基于MATLAB的特殊绘图

实验二 基于MATLAB的三维空间绘图

一、实验目的

- 1. 掌握MATLAB三维绘图命令的使用方法;
- 2. 掌握三维绘图的属性控制;
- 3. 掌握三维绘图的一般步骤;
- 4. 掌握特殊三维图形的绘制.

MATLAB作图基本原理就是把栅格数据 连接成网格面或三维曲面,然后通过颜色、 视角、透视、裁剪等修饰手段对其进行加工 ,以逼真的图形效果展现给读者的一个过程. 常见的二维绘图命令包括plot3、mesh、surf 等基本绘图命令及stem3、peaks等特殊绘图 命令,本实验中重点以mesh、surf为基本绘 图命令,着重讲解MATLAB三维绘图的一般方 法及步骤.

2.1 三维绘图常用命令及调用格式

命令	调用格式	功能描述
scatter3	scatter3(x,y,z)	绘制给定维度相同的三组数据的散点图
plot3	plot3(x,y,z)	默认格式绘制三维曲线图
	plot3(x,y,z,'cs')	自定义格式绘制三维曲线图
mesh	mesh(X,Y,Z)	默认格式绘制三维网格图
	meshc(X,Y,Z)	绘制带有等高线的三维网格图
	meshz(X,Y,Z)	绘制带有底座的三维网格图
surf	surf(X,Y,Z)	默认格式绘制三维曲面图
	surfc(X,Y,Z)	绘制带有等高线的三维曲面图
	surfl(X,Y,Z)	绘制带有光照阴影的三维曲面图

2.4 图形的标题与标注

三维图形中标题、坐标轴名称的添加同二维 绘图相似,都是通过标题添加命令title及坐标轴标 签命令来实现的,详见表2-10.

调用格式	功能描述
title('图形标题')	给图形加标题
xlabel('x轴名称')	给x轴加标注
ylabel('y轴名称')	给y轴加标注
zlabel('z轴名称')	给z轴加标注
hold on(off)	启动(关闭)图形保持功能

表2-10 图形标注的常用命令及功能描述

2.5 三维绘图的一般步骤

三维绘图一般分为如下7步:

Step 1(必选) 输入自变量x、y的区间及间距,产生自变量坐标向量;

通常有如下两种输入方式:

1) x=[a1:c1:b1]%在[a1,b1]上以c1为步长(跳跃间隔)产生数据点构成自

变量坐标向量X;

y=[a2:c2:b2]%在[**a2,b2**]上以**c2**为步长(跳跃间隔) 产生数据点构成自变量

坐标向量y;

2) x=linspace(a1, b1, n) %在[a1,b1]上等距产生n 个数据点构成自变量坐标向量x;

2.5 三维绘图的一般步骤

y=linspace(a2, b2, n) %在[**a2,b2**]上等距产生**n**个数据 点构成自变量坐标向量**y**.

Step 2(必选) 调用meshgrid,产生栅格数据X矩阵和Y矩阵;

[X, Y]=meshgrid(x, y)

Step 3(必选) 输入函数表达式;

Z=f(X, Y)

Step 4(必选) 调用三维绘图命令mesh或surf进行绘图; 调用格式参见表2-1

Step 5(可选) 图形修饰;

参见表2-2—表2-8

2.5 三维绘图的一般步骤

Step 6(可选) 设置坐标轴; 参见表2-9 Step 7(可选) 添加标题及标注 参见表2-10

3.1 绘制三维曲线图

例1 绘制函数
$$\begin{cases} x = \sin t \\ y = \cos t \\ z = t \sin t \cos t \end{cases}$$
 $t \in (0, 20\pi)$ 三维曲线图.

例2 利用 plot3,将函数 $\begin{cases} x = \sin t \\ y = \cos t \\ z = \cos 2t \end{cases}$ 的三维曲线制作成一串蓝宝石项链.

3.2 绘制三维网格图

例3 绘制
$$z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$
 在 [-7, 7; -7, 7]上的三维网格图.

例4 绘制
$$z = \frac{x^2}{16} - \frac{y^2}{9}$$
 在[-4,4;-3,3]上的带底座的三维网格图.

3.3 绘制三维曲面图

例5 绘制 $z = 5x^2 + 3y^2$ 在[-15, 15; -15, 15]上的带等高线三维曲面图.

四、实验过程 4.1绘制三维曲线图 例1 绘制函数 $\begin{cases} x = \sin t \\ y = \cos t \\ z = t \sin t \cos t \end{cases}$ $t \in (0, 20\pi)$ 三维曲线图.

Notebook 环境下的程序代码及运行结果如下:

```
t=0:pi/100:20*pi;
x=sin(t);
y=cos(t);
z=t.*sin(t).*cos(t);
plot3(x,y,z)
```


4.1绘制三维曲线图

链.

```
Notebook环境下的程序代码及运行结果如下:
t=(0:0.02:2)*pi;
x=sin(t);
y=cos(t);
z = cos(2*t);
plot3(x,y,z,'b-',x,y,z,'bd')
view(-82,58),
```


例2 利用 plot3,将函数
$$\begin{cases} x = \sin t \\ y = \cos t & t \in (0, 2\pi) \text{ 的} \leq \text{ 维曲线制作成一串蓝宝石项} \\ z = \cos 2t \end{cases}$$

链.

```
Notebook环境下的程序代码及运行结果如下:
box on
xlabel('x'),
ylabel('y'),
zlabel('z')
legend('链','宝石','Location','best')
title ('蓝宝石项链')
```


例3 绘制
$$z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$$
 在[-7,7;-7,7]上的三维网格图.

Notebook环境下的程序代码及运行结果如下: clf

- x=-7:0.1:7; %输入自变量x的区间及步长
 y=-7:0.05:7; %输入自变量y的区间及步长
 [X,Y]=meshgrid(x,y); %生成栅格数据X矩阵和Y矩阵
 R=sqrt(X.^2+Y.^2)+eps;
- Z=sin(R)./R;
 %输入函数表达式

 mesh(X,Y,Z)
 %绘三维网格图

例4 绘制 $z = \frac{x^2}{16} - \frac{y^2}{9}$ 在[-4,4;-3,3]上的带底座的三维网格图. (马鞍面)

- Notebook环境下的程序代码及运行结果如下:
- x=-4:.05:4; y=-3:.05:3; [X,Y]=meshgrid(x,y); Z=(X.^2)/16-(Y.^2)/9; meshz(X,Y,Z) %绘带底座的三维网格图

4.3 绘制三维曲面图

例 5 绘制 $z = 5x^2 + 3y^2$ 在 [-15, 15; -15, 15] 上的带等高线三维曲面图

x=-15:.8:15; y=x; [X,Y]=meshgrid(x,y); Z=5.*X.^2+3.*Y.^2; surfc(X,Y,Z) title ('Z=5.*X.^2+3.*Y.^2带等高线曲面图') xlabel('x'), ylabel('y') zlabel('z') axis on

4.3 绘制三维曲面图

4.4 绘制三维散点图

例6 绘制给定三组数据的散点图

x=[4229042.63 4230585.02 4231384.96
4231773.63 4233028.58 4233296.71
4235869.68 4236288.29];

y = [431695.4 441585.8 432745.6 436933.7

428734.4 431946.3 428705.0 432999.5];

z=[1.019 1.023 1.011 1.022 1.020 1.022 1.022 1.023];

scatter3(x,y,z)

title ('统计数据散点图')

xlabel('x')

ylabel('y')

zlabel('z')

4.4 绘制三维散点图

实验报告二(1)

一、实验目的

- 1. 掌握MATLAB三维绘图命令的使用方法;
- 2. 掌握三维绘图的属性控制;
- 3. 掌握三维绘图的一般步骤;
- 4. 掌握特殊三维图形的绘制.

MATLAB作图基本原理就是把栅格数据 连接成网格面或三维曲面,然后通过颜色、 视角、透视、裁剪等修饰手段对其进行加工 ,以逼真的图形效果展现给读者的一个过程. 常见的二维绘图命令包括plot3、mesh、surf 等基本绘图命令及stem3、peaks等特殊绘图 命令,本实验中重点以mesh、surf为基本绘 图命令,着重讲解MATLAB三维绘图的一般方 法及步骤.

2.2 三维图形属性的控制

三维图形颜色、视角、裁剪、消隐等 效果不能像二维绘图中通过自定义格式控 制符CS的设置而实现,它需调用相应功能 的控制命令而实现,下面将从颜色、视角 、裁剪、透视与消隐、水线修饰等方面介 绍MATLAB三维图形的属性控制.

2.2 三维图形属性的控制

2.2.1 颜色的控制

三维图形颜色的控制要通过调用颜色控制命令 colormap及shading实现,其用法详见表2-2—表 2-4. 表2-2 三维图形颜色控制命令及功能描述

命令	调用格式	功能描述
colormap	colormap([R,G,B])	以自定义颜色着色
	colormap(MAP)	以色图控制方式着色
shading	shading faceted	以截面式颜色分布方式着色
	shading interp	以插补式颜色分布方式着色
	shading flat	以平面式颜色分布方式着色

2.2 三维图形属性的控制

表 2-3 [R, G, B]值及其对应颜色

[R,G,B]值	颜色	[R,G,B]值	颜色
$[0\ 0\ 0]$	黑色	[0 0 1]	蓝色
[0 1 0]	绿色	[0 1 1]	浅蓝
[1 0 0]	红色	[1 0 1]	品红
[1 1 0]	黄色	[1 1 1]	白色
[0.5 0.5 05]	灰色	[0.5 0 0]	暗红色
[1 0.62 0.4]	铜色	[0.67 0 1]	紫色
[0.49 1 0.83]	宝石蓝		

表 2-4 色图函数及其色图类型

色图函数	色图类型	色图函数	色图类型
hsv	饱和值色图	jet	饱和值色图 II
hot	暖色色图	cool	冷色色图
bone	兰色色图	copper	铜色色图
pink	粉红色图	prism	光谱色图
gray	灰度色图	flag	红、白、蓝交替色图

颜色图名称	色阶
parula	
jet	
hsv	
hot	
cool	
spring	
summer	
autumn	
winter	
gray	
bone	
copper	
pink	
lines	
colorcube	
prism	
flag	
white	

2.2.2 视角的控制

三维图形因观察视角的不同,将会呈现不同的图形效 果,灵活掌握三维图形视角的调整是实现三维作图非常 重要的一个环节,视角的调节需通过命令view来实现, 其用法见表2-5.

命令	调用格式	功能描述
view	view(az,el)	设置视角位置在 azimuth 角度和 elevation 角度确 定的射线上
	view([x,y,z])	设置视角位置在[x,y,z]向量所指示的方向
	view(2)	默认的二维视图视角,相当于 az = 0, el = 90
	view(3)	默认的三维视图视角,相当于 az = -37.5, el = 30
	[az,el]=view	返回当前视图的视角 az 和 el

表2-5 三维图形视角调节命令view的用法

其中参数 az 和 el 分别表示方位角(与 x=0 平面的夹角)和仰角(z=0 平面所成的 方向角),其默认值分别为-37.5°和 30°,其意义如图 2-1 所示.

图 2-1 视角设置参数意义图示(来自 MATLAB 联机帮助)

2.2.3 图形的的裁剪

根据观察或研究的需要,通常需要对一个空间曲面进 行适当的裁剪,该功能一般通过命令nan来实现,其用法 详见表2-6:

表2-6 三维图形裁剪命令nan的调用格式及功能描述

命令	调用格式	功能描述
nan	p(a:b,c:d)=nan	把p(a:b,c:d)部分裁减
	Z((f(X,Y) <=m)) = nan	从原图像中把f(X,Y)<=m部分裁减

2.2.4 透视与消隐

在MATLAB的三维绘图中,常常需要显示(隐藏)被前面图形遮挡的后面图形部分,该功能的实现需借助命令hidden来实现,详见表2-7:

表2-7 透视与消隐命令hidden的调用格式及功能描述

命令	调用格式	功能描述	
hidden	hidden on	去掉网格曲面的隐藏线	
	hidden off	显示网格曲面的隐藏线	

2.2.5 水线修饰

调用waterfall函数绘制三维表面网格图,可以产生瀑 布效果,其用法详见表2-8:

命令	调用格式	功能描述
waterfall	waterfall(X,Y,Z)	绘制三维瀑布图

表2-8 waterfall调用格式及功能描述

三、实验内容

例 6 用你喜欢的颜色及红、白、蓝色图分别控制 $z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$ 在[-7, 7; -7, 7]上

三维曲面图的颜色.

例7 在子图窗口中分别绘制在不同视角多峰函数 peaks 的图形.

例8 裁剪多峰函数图形中自变量落在(30:40,20:30)的部分.

例9 从 $z = \frac{x^2}{16} - \frac{y^2}{9} \alpha [-4, 4; -3, 3]$ 上的带底座的三维网格图中挖去 $x^2 + y^2 \leq z^2$ 部分.

例 10 绘制 z=
$$\frac{\sin\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}$$
在[-7,7;-7,7]上的瀑布图.

四、实验过程

4.4 三维图形属性控制

例 6 用你喜欢的颜色及红、白、蓝色图控制 $z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$ 在[-7, 7; -7, 7]上三维

曲面图的颜色.

Notebook 环境下的程序代码如下:

```
x=-7:0.5:7;
y=-7:0.8:7;
[X,Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2)+eps;
Z=sin(R)./R;
surf(X,Y,Z)
colormap([100]) %自定义单色控制
```


四、实验过程

4.4 三维图形属性控制

例 6 用你喜欢的颜色及红、白、蓝色图控制 $z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$ 在[-7, 7; -7, 7]上三维

曲面图的颜色.

Notebook 环境下的程序代码如下:

```
x=-7:0.5:7;
y=-7:0.8:7;
[X,Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2)+eps;
Z=sin(R)./R;
surf(X,Y,Z)
colormap(flag) %色图控制
```



```
四、实验过程
  4.4 三维图形属性控制
  何6 用你喜欢的颜色及红、白、蓝色图控制 z = \frac{\sin\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} 在[-7, 7; -7, 7]上三维
曲面图的颜色.
  Notebook 环境下的程序代码如下:
  x = -7:0.5:7;
  y = -7:0.8:7;
  [X,Y]=meshgrid(x,y);
  R=sqrt(X.^{2}+Y.^{2})+eps;
  Z=sin(R)./R;
  surf(X,Y,Z)
  mymap = [0 \ 0 \ 0; 1 \ 0 \ 0; 0 \ 1 \ 0; 0 \ 0 \ 1; 1 \ 1];
  colormap(mymap) %用自创建的颜色图着色
```


四、实验过程

例7 在子图窗口中分别绘制在不同视角多峰函数 peaks 的图形. Notebook 环境下的程序代码如下

```
[X,Y,Z]=peaks; %peaks为系统提供的多峰函数
subplot(2,2,1);
mesh(X,Y,Z);
view(-37.5,30); %指定子图1的视角
title('azimuth=-37.5,elevation=30');
```



```
四、实验过程
subplot(2,2,2);
mesh(X,Y,Z);
view(-17,60); %指定子图2的视角
title('azimuth=-17,elevation=60');
subplot(2,2,3);
mesh(X,Y,Z);
view(-90,0); %指定子图3的视角
title('azimuth=-90,elevation=0');
subplot(2,2,4);
mesh(X,Y,Z);
view(-7,-10); %指定子图4 的视点
title('azimuth=-7,elevation=10');
```


四、实验过程 例8 裁剪多峰函数图形中自变量落在 (30:40,20:30)的部分.

Notebook环境下的程序代码及运行结果如下:

clf

```
p=peaks;
p(30:40,20:30)=nan;
surf(p)
```


四、实验过程

例9 从 $z = \frac{x^2}{16} - \frac{y^2}{9}$ 在[-4, 4; -3, 3]上的带底座的三维网格图中挖去 $x^2 + y^2 \le z^2$ 部分. Notebook 环境下的程序代码如下

x = -4:.05:4;

y=-3:.05:3;

[X,Y]=meshgrid(x,y); %meshgrid网线坐标值计 算函数,[X,Y]表示坐标矩阵 Z=(X.^2)/16-(Y.^2)/9; %Z表示坐标矩阵 Z((X.^2 + Y.^2 <=2.^2)) = nan; meshz(X,Y,Z)

四、实验过程
例10 绘制
$$z = \frac{\sin\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}} E[-7, 7; -7, 7]$$
上的瀑布图.

Notebook 环境下的程序代码如下

```
clf
x=-7:0.1:7;
y=-7:0.05:7;
[X,Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2)+eps;
Z=sin(R)./R;
waterfall(X,Y,Z)
```


实验报告二(2)

实验二(3) 基于MATLAB的三维特殊绘图

一、实验目的

- 1. 掌握MATLAB三维绘图命令的使用方法;
- 2. 掌握三维绘图的属性控制;
- 3. 掌握三维绘图的一般步骤;
- 4. 掌握特殊三维图形的绘制.

MATLAB作图基本原理就是把栅格数据 连接成网格面或三维曲面,然后通过颜色、 视角、透视、裁剪等修饰手段对其进行加工 ,以逼真的图形效果展现给读者的一个过程. 常见的二维绘图命令包括plot3、mesh、surf 等基本绘图命令及stem3、peaks等特殊绘图 命令,本实验中重点以mesh、surf为基本绘 图命令,着重讲解MATLAB三维绘图的一般方 法及步骤.

2.6 特殊三维图形的绘制

利用MATLAB还可以绘制一些特殊三 维图形,其常见的命令如表2-11所示:

表4-11 MAILAB币见付你——维密形的宏密中マ及功能						
命令	功能	命令	功能			
peaks	多峰函数曲面	pie3	三维饼图			
cylinder	圆柱面	sphere	球面			
stem3	三维火柴杆曲面	bar3	三维直方图			

士。11.34.27.4万兴同时进一桥国现的公园在太卫马华

三、实验内容

- 3.5 特殊三维图形的绘制
- 例6 以不同的方式绘制三维测试图。
- 例7 在 $[0,2\pi]$ 上绘制以2+sin(t)为母线的圆柱体。
- 例8 绘制一个30等分的球体。
- 例9 绘制一个30等分的球体并着色。
- 例10 绘制一个三维饼图。

3.5 特殊三维图的绘制

例 11 绘制
$$\begin{cases} x = e^{\frac{t}{10}} \cos t \\ y = e^{\frac{t}{10}} \sin t \end{cases} \quad t \in (0, 6\pi)$$
的三维火柴杆图.

例 12 绘制大小各异的一对同心球体,运用三维绘图的各种修饰手段,制作一 个玲珑球.

四、实验过程

例6 以不同的方式绘制三维测试图。

```
Notebook环境下的程序代码及运行结果如下:
[X,Y,Z]=peaks(30);
subplot(2,2,1);mesh(X,Y,Z);
subplot(2,2,2);meshz(X,Y,Z);
subplot(2,2,3);surfl(X,Y,Z)
subplot(2,2,4);surfc(X,Y,Z)
```



```
四、实验过程
例7 在[0,2π]上绘制以2+sin(t)为母线的圆柱体。
Notebook环境下的程序代码及运行结果如下:
t=0:pi/10:2*pi;
[x,y,z]=cylinder(2+sin(t),100);
surf(x,y,z)
axis square
```

```
title('圆柱示例图')
```



```
四、实验过程
例8 绘制一个30等分的球体。
Notebook环境下的程序代码及运行结果如下:
[X,Y,Z]=sphere(30);
surf(X,Y,Z);
title ('球面示例图')
```



```
实验过程
例9
   绘制一个30等分的球体并着色。
Notebook环境下的程序代码及运行结果如下:
[X, Y, Z] = sphere(30);
surf(X,Y,Z);
shading interp
colormap(hot)
hidden off
axis equal
axis off
title ('球面着色示例图')
```


例10 绘制一个三维饼图。

Notebook环境下的程序代码及运行结果如下: x = [1 3 0.5 2.5 2]; y = [0 1 0 0 0]; pie3(x,y) colormap hsv

四、实验过程
例11 绘制
$$\begin{cases} x = e^{\frac{t}{10}} \cos t \\ y = e^{\frac{t}{10}} \sin t \end{cases}$$
 的三维火柴杆图.

```
Notebook环境下的程序代码及运行结果如下:
t=0:pi/10:6*pi;
x = \exp(-t/10) \cdot \cos(t);
y = \exp(-t/10) \cdot \sin(t);
stem3(x,y,t,'filled')
hold on
plot3(x,y,t)
xlabel('x'),
ylabel('y')
zlabel('z')
```


四、实验过程 例12 绘制大小各异的一对同心球体,运用三维绘图的 各种修饰手段,制作一个玲珑球. Notebook环境下的程序代码及运行结果如下: [X0, Y0, Z0] = sphere(30);X=2*X0; Y=2*Y0; Z=2*Z0;surf(X0,Y0,Z0); shading interp hold on mesh(X,Y,Z) colormap(hot) hold off hidden off axis equal axis off title ('晶莹剔透的玲珑球')


```
例13 绘制三维心形图.
Notebook环境下的程序代码及运行结果如下:
[x,y,z]=meshqrid(linspace(-1.3,1.3));
val = (x.^{2}+(9/4)*y.^{2}+z.^{2}-1).^{3}-x.^{2}.*z.^{3}-
(9/80) *y.^2.*z.^3;
%三维心形函数
isosurface(x,y,z,val,0)%等值曲面绘图函数
axis equal
view(-10,24)
colormap flag
title ('火热的心')
```


火热的心

实验报告二(3)

实验三(1) 基于MATLAB的微分计算

一、实验目的

1. 熟悉MATLAB软件的基本操作;

掌握函数与极限、求导、偏导数、不定积分、定积分和重积分、级数求和、幂级数展开等问题的有关MATLAB操作命令及使用方法;

3. 学会利用MATLAB软件对微积分方面的问题进行分析研究;

4. 学会利用MATLAB软件解决一元和多元函数微积分方面的实际问题.

二、实验原理

总结和归纳微积分中所涉及到的: 求极限、导数、偏导数、不定积分、定积分和重积分、极值、级数求和、幂级数展开等计算的常见的MATLAB命令及调用格式,给出其通用计算模板.

3.1 极限问题的求解

表3-1求一元函数和多元函数极限的命令及调用格式

命令	调用格式	功能
limit	limit(f)	计算一元函数极限 $\lim_{x\to 0} f(x)$
limit	limit(f,x,a) 或 limit(f,a)	计算一元函数极限 $\lim_{x\to a} f(x)$
limit	limit(f,x,inf)或 limit(f,inf)	计算一元函数极限 $\lim_{x\to\infty} f(x)$
limit	limit(f,x,a,'right')或	计算一元函数单侧极限
	limit(f,x,a,'left')	$\lim_{x \to a^+} f(x) \overline{\mathfrak{R}} \lim_{x \to a^-} f(x)$
limit	limit(limit(f,x,a),y,b)或	计算二元函数 $\lim f(x, y)$
	limit(limit(f,y,b),x,b)	$\begin{array}{c} x \rightarrow a \\ y \rightarrow b \end{array}$

3.2 求函数的导数

表3-2求一元函数和多元函数导数或偏导数的命令及调用格式

命令	调用格式	功	能	
diff	diff(f)或 diff(f,x)	对函数	f(x)	求关于变量 x 的导数
	diff(f,x,n)	对函数	f(x)	求关于变量x的n阶导数
	diff(diff(f,x,m),y,n)或	对二元	函数;	$f(x, y) \stackrel{}{\Rightarrow} \frac{\partial^{m+n} f}{\partial x^m \partial y^n}$
	diff (diff(f,y,n),x,m)	注: 对自]变量	个数大于等于3的多元函数
		求偏导	数的命	命令格式类似

例1 计算极限

(1)
$$\lim_{x \to 0} \frac{\sin x}{x}$$
; (2) $\lim_{x \to \infty} x(1 + \frac{a}{x})^x \sin \frac{b}{x}$; (3)
 $\lim_{x \to 0^+} \frac{\ln \cot x}{\ln x}$; (4) $\lim_{\substack{x \to 2 \\ y \to 0}} \frac{xy}{\sqrt{xy + 1} - 1}$.

例2计算

(1)求
$$y = (x^2 + 4x + 3) \sin x$$
 的导数 y',

 $y^{(2)}$ 和 $y^{(10)}$;

(2)求 $z = x \sin(x^2 + y^2)$ 的二阶偏导数;

(3) 己知
$$f(x, y, z) = \sin(x^2 y) e^{-x^2 y - z^2}$$
,

四、实验过程

例1 计算极限

解 (1)
$$\lim_{x\to 0} \frac{\sin x}{x}$$
;

Notebook 环境下程序代码及运行结果如下:

syms x ;	%创建符号变量
y=sin(x)./x;	8定义函数
<pre>limit(y,x,0)</pre>	%求极限

例1 计算极限

解 (1) $\lim_{x\to 0} \frac{\sin x}{x}$;

 Notebook 环境下程序代码及运行结果如下:

 syms x ;
 %创建符号变量

 y=sin(x)./x;
 %定义函数

 limit(y,x,0)
 %求极限

ans =

1

四、实验过程

(2)
$$\lim_{x\to\infty} x(1+\frac{a}{x})^x \sin\frac{b}{x} ;$$

 syms x a b;
 %创建多个符号变量

 f=x*(1+a/x)^x*sin(b/x);
 %inf表示正无穷大

(2)
$$\lim_{x\to\infty} x(1+\frac{a}{x})^x \sin\frac{b}{x} ;$$

```
syms x a b; %创建多个符号变量
f=x*(1+a/x)^x*sin(b/x);
limit(f,x,inf) %inf表示正无穷大
```

ans =

b*exp(a)

四、实验过程

 $\lim_{x\to 0^+}\frac{\ln\cot x}{\ln x};$ (3)

 syms x;
 %创建一个符号变量

 f=log(cot(x))/log(x);
 *

 limit(f,x,0,'right')
 %求x趋向于0的右极限

四、实验过程

 $\lim_{x\to 0^+}\frac{\ln\cot x}{\ln x};$ (3)

 syms x;
 %创建一个符号变量

 f=log(cot(x))/log(x);
 *

 limit(f,x,0,'right')
 %求x趋向于0的右极限

ans =

-1

四、实验过程

(4) $\lim_{\substack{x \to 2 \\ y \to 0}} \frac{xy}{\sqrt{xy+1}-1};$

syms x y ; %创建多个符号变量
f=(x*y)/(sqrt(x*y+1)-1);
limit(limit(f,x,2),y,0) %求x→2 y→0时的极限

四、实验过程

(4) $\lim_{\substack{x \to 2 \\ y \to 0}} \frac{xy}{\sqrt{xy+1}-1};$

```
syms x y ; %创建多个符号变量
f=(x*y)/(sqrt(x*y+1)-1);
limit(limit(f,x,2),y,0) %求x→2 y→0时的极限
```

ans =

2

例2 (1) 求 $y = (x^2 + 4x + 3) \sin x$ 的导数 y', y'' 和 $y^{(10)}$;

解(1)Notebook 环境下程序代码及运行结果如下:

```
syms x; %创建一个符号变量
y=sin(x)*(x^2+4*x+3);
y1=diff(y,x)
y2=diff(y,x,2)
y10=diff(y,x,10)
```


例2 (1) 求 $y = (x^2 + 4x + 3) \sin x$ 的导数 y', y'' 和 $y^{(10)}$;

解(1) Notebook 环境下程序代码及运行结果如下:

```
y1 = cos(x)*(x^{2} + 4*x + 3) + sin(x)*(2*x + 4)

y2 = 2*sin(x) - sin(x)*(x^{2} + 4*x + 3) + 2*cos(x)*(2*x + 4)

y10 = 90*sin(x) - sin(x)*(x^{2} + 4*x + 3) + 10*cos(x)*(2*x + 4)
```


(2)求 $z = x \sin(x^2 + y^2)$ 的二阶偏导数;

Notebook 环境下程序代码及运行结果如下:

```
syms x y;
z=x*sin(x^2+y^2);
zxx=diff(diff(z,x),x)
zxy=diff(diff(z,x),y)
zyx=diff(diff(z,y),x)
zyy=diff(diff(z,y),y)
```

%定义多个符号变量

%先对**x**再对**x**求偏导 %先对**x**再对**y**求偏导 %先对**y**再对**x**求偏导 %先对**y**再对**y**求偏导

(2)求 $z = x \sin(x^2 + y^2)$ 的二阶偏导数;

Notebook 环境下程序代码及运行结果如下:

 $zxx = 6*x*\cos(x^{2} + y^{2}) - 4*x^{3}\sin(x^{2} + y^{2})$ $zxy = 2*y*\cos(x^{2} + y^{2}) - 4*x^{2}*y*\sin(x^{2} + y^{2})$ $zyx = 2*y*\cos(x^{2} + y^{2}) - 4*x^{2}*y*\sin(x^{2} + y^{2})$ $zyy = 2*x*\cos(x^{2} + y^{2}) - 4*x*y^{2}\sin(x^{2} + y^{2})$

四、实验过程 (3)已知 $f(x, y, z) = \sin(x^2 y)e^{-x^2 y - z^2}$, 求 $\frac{\partial^6 f}{\partial x^3 \partial y^2 \partial z}$.

Notebook 环境下程序代码及运行结果如下:

syms x y z; %定义多个符号变量
f=sin(x^2*y)*exp(-x^2*y-z^2);
fx3y2z=diff(diff(diff(f,x,3),y,2),z,1); %求导
fx3y2z=simple(fx3y2z) %化简结果

四、实验过程 (3)已知 $f(x, y, z) = \sin(x^2 y)e^{-x^2 y - z^2}$,求 $\frac{\partial^6 f}{\partial x^3 \partial y^2 \partial z}$.

Notebook 环境下程序代码及运行结果如下:

fx3y2z =
32*x*z*exp(- y*x^2
2*x^6*y^3*cos(x^2*y)
2*x^6*y^3*sin(x^2*y)
12*x^2*y*sin(x^2*y))

- $32*x*z*exp(- y*x^2 z^2)*(3*cos(x^2*y) +$
- $2*x^{6}y^{3}\cos(x^{2}y) + 15*x^{4}y^{2}\sin(x^{2}y) -$

实验报告三(1)

▶ 第一部分 实验目的 🖌 第二部分 实验原理 ▶ 第三部分 实验内容 ▶ 第四部分 实验过程 ▶ 第五部分 实验小结 ▶ 第六部分 实验报告

一、实验目的

1. 熟悉MATLAB软件的基本操作;

掌握函数与极限、求导、偏导数、不定积分、定积分和重积分、级数求和、幂级数展开等问题的有关MATLAB操作命令及使用方法;

3. 学会利用MATLAB软件对微积分方面的问题进行分析研究;

4. 学会利用MATLAB软件解决一元和多元函数微积分方面的实际问题.

二、实验原理

总结和归纳微积分中所涉及到的: 求极限、导数、偏导数、不定积分、定积分和重积分、极值、级数求和、幂级数展开等计算的常见的MATLAB命令及调用格式,给出其通用计算模板.

3.3 积分问题的求解

命令	调用格式	功能
int	int(f,x)	计算一元函数不定积分 ∫f(x)dx,但输出只是一个原函 数,而没有加上任意常数 C
	int (f,x,a,b)	计算一元函数定积分 $\int_{a}^{b} f(x) dx$, 这里 a, b 是数值
	int (f,x,m,n)	计算一元函数定积分∫ _m ⁿ f(x)dx, 这里 m, n 是符号变量
	int (int (f,y1,y2) ,x,a,b)	计算二重积分 $\int_a^b dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy$
	int (int (int(f,z,z1,z2), y,y1,y2) ,x,a,b)	计算三重积分 $\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz$

表 3-3 求一元函数和多元函数积分的命令及调用格式

3.4 级数求和

表 3-5 级数求和的命令及调用格式

命令	调用格式	功能
symsum	symsum(一般项)	用默认变量求级数和
	symsum(一般项,变量)	用指定变量求级数和
	symsum(一般项,变量,起	用默认变量从"起始"到
	始,终止)	"终止"求级数和

例 3 求下列不定积分

$(1) \int \sin x dx$

- (2) **∫ x³ ln² xdx** (微积分课本 P213 例 7)
- (3) ∫ sin ax e⁵ dx (微积分课本 224 页 3(5))
- 例4 求下列定积分
- (1) $\int_0^1 e^{\sqrt{x}} dx$;
- (2) $\int_0^{+\infty} \frac{1}{1+x^2} dx$;
- (3) $\iint_{D} \frac{\sin x}{x} dx dy$,其中D由y = x及 $y = x^2$ 围成; (微积分课本 267 页例 7.39)
- (4) $\int_{1}^{2} dx \int_{\sqrt{x}}^{x^{2}} dy \int_{\sqrt{xy}}^{x^{2}y} (x^{2} + y^{2} + z^{2}) dz$

例 6(1)求级数
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$
的和

(2) 求级数
$$S = \frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \dots + \frac{1}{(3n-2) \times (3n+1)} + \dots$$
的和;

四、实验过程

解(1) $\int \sin x dx$;

Notebook 环境下程序代码及运行结果如下: syms x C; %创建符号变量 y=sin(x); yj=int(y,x)+C

%求不定积分

四、实验过程

解(1) $\int \sin x dx$;

Notebook环境下程序代码及运行结果如下: syms x C; %创建符号变量 y=sin(x); yj=int(y,x)+C

yj = C - cos(x)

$$\lim \int \sin x dx = -\cos x + C$$

%求不定积分

四、实验过程

解(2) $\int x^3 \ln^2 x dx$;

```
syms x C;
y=x^3*log(x)^2;
yj=int(y,x)+C
```


四、实验过程

```
解(2) \int x^3 \ln^2 x dx;
```

```
syms x C;
y=x^3*log(x)^2;
yj=int(y,x)+C
```

```
yj =
C + (x^4*(8*\log(x)^2 - 4*\log(x) + 1))/32
```

$$\prod \int x^3 \ln^2 x \, dx = \frac{1}{32} \cdot x^4 (8 \ln^2 x - 4 \ln x + 1) + C$$

四、实验过程 $m(3) \int \sin ax - e^{\frac{x}{b}} dx;$

Notebook 环境下程序代码及运行结果如下:

```
syms x a b C;
y=(sin(a*x)-exp(x/b));
yj=int(y,x)+C
```

%创建符号变量 %求不定积分


```
四、实验过程
解(3) \int \sin ax - e^{\frac{x}{2}} dx;
Notebook环境下程序代码及运行结果如下:
syms x a b C;
y=(sin(a*x)-exp(x/b));
yj=int(y,x)+C
```

%创建符号变量 %求不定积分

$$\mathbb{R} \int \sin ax - e^{\frac{x}{b}} dx = -\frac{1}{a} \cos ax - be^{\frac{x}{b}} + C$$

四、实验过程

```
syms x;
y=exp(sqrt(x));
I=int(y,x,0,1)
```


四、实验过程

```
syms x;
y=exp(sqrt(x));
I=int(y,x,0,1)
```

I =2

即
$$\int_0^1 e^{\sqrt{x}} = 2$$
,下同。

四、实验过程

解(2) $\int_0^{+\infty} \frac{1}{1+x^2} dx$;

Notebook 环境下程序代码及运行结果如下:

syms x; %创建符号变量 y=1/(1+x^2); I=int(y,x,0,inf) %计算定积分

四、实验过程

解(2) $\int_0^{+\infty} \frac{1}{1+x^2} dx$;

Notebook 环境下程序代码及运行结果如下:

syms x; %创建符号变量
y=1/(1+x^2);
I=int(y,x,0,inf) %计算定积分

I =

pi/2

四、实验过程 解(3) $\iint_{x} \frac{\sin x}{x} dx dy, 其中 D \oplus y = x \partial_y = x^2 \oplus dx;$

```
x=0:0.1:1;
y1=x;
y2=x.^2;
plot(x,y1,'bp-',x,y2,'ro--');
title ('y=x and y=x^2的图形')
legend ('x','x^2','Location','Best')
xlabel('x'),ylabel('y')
grid off
axis on
```


四、实验过程 解(3) $\iint_{D} \frac{\sin x}{x} dx dy, 其中 D \oplus y = x \partial y = x^2 \oplus dx;$

四、实验过程 解(3) $\iint \frac{\sin x}{x} dx dy, 其中 D \oplus y = x \partial y = x^2 \oplus dx;$ Notebook 环境下程序代码及运行结果如下:

```
x=0:0.1:1;
y1=x;
y2=x.^2;
plot(x,y1,'bp-',x,y2,'ro--');
title ('y=x and y=x^2的图形')
legend ('x', 'x^2', 'Location', 'Best')
xlabel('x'),ylabel('y')
grid off
axis on
hold on
fill(x,y1,'y',x,y2,'y')
```


实验过程 四、 解(3) $\iint_{D} \frac{\sin x}{x} dx dy, 其中 D \oplus y = x \partial y = x^2 \oplus dx;$

四、实验过程

解(3) $\iint_{D} \frac{\sin x}{x} dx dy, 其中 D \equiv x = x = x = x^2 \equiv x;$

Notebook 环境下程序代码及运行结果如下:

syms x y

 $I2=int(int(sin(x)/x,y, x^2, x),x,0,1)$

四、实验过程 解(3) $\iint_{D} \frac{\sin x}{x} dx dy, 其中 D \oplus y = x \partial y = x^2 \oplus dx;$

syms x y
I2=int(int(sin(x)/x,y, x^2, x),x,0,1)

I2 =

 $1-\sin(1)$

四、实验过程

f (4) $\int_{1}^{2} dx \int_{\sqrt{x}}^{x^{*}} dy \int_{\sqrt{x}}^{x^{*}y} (x^{2} + y^{2} + z^{2}) dz$.

```
syms x y z
I3=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,s
qrt(x),x^2),x,1,2)
VI3=vpa(I3) % 积分结果用 32 位数字
表示
```


四、实验过程

f (4) $\int_{1}^{2} dx \int_{x}^{x^{2}} dy \int_{x}^{x^{2}y} (x^{2} + y^{2} + z^{2}) dz$.

```
syms x y z
I3=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,s
qrt(x),x^2),x,1,2)
VI3=vpa(I3) % 积分结果用 32 位数字
表示
I3 =
(14912*2^(1/4))/4641 - (6072064*2^(1/2))/348075 +
(64*2^(3/4))/225 + 1610027357/6563700
```

VI3 =

 ${\color{red}{\textbf{224.92153573331143159790710032805}}}$

四、实验过程 **解**(1) 求级数 $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ 的和;

%求级数的和

四、实验过程 **解**(1) 求级数 $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ 的和;

```
syms n;
un=2^n/3^n;    %级数的通项
s=symsum(un,n,1,inf)     %求级数的和
```

s =

2

解(2) 求级数 $S = \frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \dots + \frac{1}{(3n-2) \times (3n+1)} + \dots$ 的和

Notebook 环境下程序代码及运行结果如下:

syms n; un=1/((3*n-2)*(3*n+1)); s=symsum(un,n,1,inf)

%级数的通项 %求级数的和

四、实验过程

解(2) 求级数 $S = \frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \dots + \frac{1}{(3n-2) \times (3n+1)} + \dots$ 的和

Notebook 环境下程序代码及运行结果如下:

syms n;

un=1/((3*n-2)*(3*n+1)); s=symsum(un,n,1,inf) %级数的通项 %求级数的和

s = 1/3

五、实验小结

1.利用MATLAB计算二元函数的极限时,其只 有计算功能,没有判断功能;

2. 利用MATLAB计算高阶导数时,只能计算有限阶,不能计算符号阶;

3.利用MATLAB计算不定积分时,输出的结果 没有加上任意常数C,需要如入命令时自己加 上.

基于MATLAB的线性代数基本计算

▶ <u>第一部分</u> §矩阵的创建及基本运算
 ▶ <u>第二部分</u> §行列式的计算
 ▶ <u>第三部分</u> §矩阵秩的计算
 ▶ <u>第四部分</u> §逆矩阵的计算
 ▶ <u>第五部分</u> §矩阵方程的求解

一、矩阵的创建

1、一般矩阵的创建 例1:A=[123;456;789]

A =

- 1 2 3
- 4 5 6

7 8 9

中括号作用:输入矩阵或向量 逗号或空格作用:分隔某一行的元素。 分号作用:区分不同的行。

一、矩阵的创建

2、特殊矩阵的创建

2.1 随机矩阵:矩阵的元素为随机数,可以通过 MATLAB内部函数rand构成一个随机矩阵,使用格式与 zeros相同。

A=rand(3)

B=rand (3,2)

A =

	0.1419	0.7922	0.0357
	0.4218	0.9595	0.8491
	0.9157	0.6557	0.9340
В	=		
	0.6787	0.3922	
	0.7577	0.6555	
	0.7431	0.1712	

一、矩阵的创建

2、特殊矩阵的创建

2.2 **魔方矩阵:**行、列、对角线之和均相等的矩阵,可以通过MATLAB内部函数magic构成一个魔方矩阵,调用格式magic(n)

A=magic (3)

B=magic (5)

一、矩阵加、减、乘、乘方运算

[运算符] +,-,*, ^

[运算规则]按线性代数中的"+""-""×", "^"进行。

例.已知矩阵
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 5 & 1 & 2005 \\ 2004 & 9 & 2 \\ 1 & 256 & 178 \end{pmatrix}$$

求 $C1 = A + B, C2 = A - B, C3 = A * B, C4 = A^{10}.$

%程序 Click $A = [2 \ 1 \ -1; 2 \ 1 \ 2; 1 \ -1 \ 1];$ $B = [5 \ 1 \ 2005 \ ;2004 \ 9 \ 2;1 \ 256 \ 178];$ C1 = A + BC2 = A - BC3 = A * B $C4 = A^{10}$

C1 =			
	7	2	2004
	2006	10	4
	2	255	179
C2 =			
	-3	0	-2006
	-2002	-8	0
	0	-257	-177
C3 =			
	2013	-245	3834
	2016	523	4368
	-1998	248	2181
C4 =			
	39440	19609	-31
	39218	19831	62
	31	-31	253

二、矩阵行列式的计算

例题.计算矩阵A =
$$\begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$
的行列式.

[函数命令] [调用格式] D = det(A)

det

%程序 Click A = [2 1 - 1; 2 1 2; 1 - 1 1];D = det(A)

ATLAB

<u>E</u>dit <u>V</u>iew We<u>b</u> <u>W</u>indow <u>H</u>elp

_ 7 🛛

🛎 % 🖻	ရဲ့ရှိ ကြေ ကြ 👔	🖡 📍 🤶 Curi	rent Directory: d: WATLAB6	o5work 🔽 🛄	
space			S	Command Window	×
	🖶 Stack: Base	~		>> $A=[2 \ 1 \ -1; 2 \ 1 \ 2; 1 \ -1 \ 1];$	^
	Size	Bytes	Class	$D= \det(A)$	
	3x3	72	double array	D =	
I	1×1	8	double array		
	3x3	72	double array	9	
ļ	3x3	72	double array	>>> >>>	
	3x1	24	double array		
ns	1x4	32	double array		
:	1x4	32	double array		
	Queront Di	restory			
VVorksp		rectory			
nand History			35		
ig(A) l=oig(A)					
1 -1;2 1	2;1 -1 1];				
et(A)					~

Ś

1.计算
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 5 & -1 \end{pmatrix}$$
的行列式的值.

三、矩阵秩的计算 例.计算矩阵A = $\begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix}$ 的秩.

「函数命令] rank [调用格式] r = rank(A)

%程序 Click A=[2 1 -1;2 1 2;1 -1 1]; r = rank(A)

🗚 EATLAB								_ 7	×
<u>F</u> ile <u>E</u> dit <u>V</u> iew We	e <u>b W</u> indow <u>H</u> el	Լթ							
D 🗃 X 🖻 🛍	നവ 🕅	? Curr	rent Directory:	d:\MATLAB6p5\v	vork	~			
Workspace			X 5	Command Windo	ow			•	×
൙ 🔜 💵 🗃 🖻	Stack: Base	×		1/0	1/0	1/0			^
Name	Size	Bytes	Class	>> A=[2 1 -1:	2 1 2:1 -1 1]:				
A A	3x3	72	double a	r= rank(A)					
⊞ B	3x3	72	double a						
E C1	3x3	72	double a	r =					
# C2	3x3	72	double a	3					
<mark>#</mark> СЗ	3x3	72	double a						
II D	1x1	8	double a	>>					
r	1x1	8	double a 🔽						
<			>						
VVorkspace	Current Direc	tory							
Command History			X						
C1=A+B			^						
C2=A-B									
C3=A*B A=[2 1 -1·2 1 2·1 -1 1]·									
B=[5 1 2005 ;2004 9 2;1 256 178];									
C1=A+B									
C2=A-B									
C3=A*B									
A=[2 1 -1;2 1 2;1 -1 R= ((4))	[1];								
d= 1nv(A) a=[2 1 -1·2 1 2·1 -1	11.							1	
format rat	、 %用有理格式输	动出							
B=inv(A)									=
A=[1 1 1;2 2 2;1 -1	1];								
B= inv(A)									
A=L2 1 -1;2 1 2;1 -1	[1];								~
r= rank(A)			~					>	
r =

3

三'、矩阵的初等行变换 例.对矩阵A = $\begin{pmatrix} 2 & 1 & -1 & 2 \\ 2 & 1 & 2 & 5 \\ 1 & -1 & 1 & 1 \end{pmatrix}$ 进行初等行变换. [函数命令] rref [调用格式] A = rref(A)%程序 Click $A = [2 \ 1 \ -1 \ 2; 2 \ 1 \ 2 \ 5; 1 \ -1 \ 1 \ 1];$ A=rref (A)

A =

1 0 0 1 0 1 0 1 0 0 1 1

四、逆矩阵的计算

例题.计算矩阵A =
$$\begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$
的逆矩阵.

[函数命令]

inv

[调用格式]

B = inv(A)

%程序1 Click A=[2 1 - 1; 2 1 2; 1 - 1 1];B = inv(A)

4.	 	
Α.	LAB	

<u>F</u>ile <u>E</u>dit <u>V</u>iew We<u>b</u> <u>W</u>indow <u>H</u>elp

🗅 🖻 👗 🖪 🛍	က က 🛛 🇊	? Cur	rent Directory:	d:WATLAB6p5\work	
Workspace 🛛 💌				Command Window	×
🖆 🛃 📑 Stack: Base 🗸				-1998 248 2181	^
Name	Size	Bytes	Class	>> A=[2 1 -1;2 1 2;1 -1 1];	
A 🔛	3x3	72	double arra	B= inv(A)	
В	3x3	72	double arra		
E C1	3x3	72	double arra	B =	
1 C2	3x3	72	double arra	0. 3333 0 0. 3333	
# СЗ	3x3	72	double arra	0 0.3333 -0.6667	
⊞ D	1x1	8	double arra	-0. 3333 0. 3333 0	
Vorkspace	Current Dire	ectory	>	»»	
Command History					
B=[5 1 2005 ;2004 9 2;1 256 178];			^		
C1=A+B					
C2=A-B					
A=[2 1 -1;2 1 2;1 -1	1];				
B= inv(A)					
B=[5 1 2005 ;2004 9 2;1 256 178];					
C1=A+B					
C2=A-B					
L3=A*B A=[2 1 -1·2 1 2·1 -1 1]·					
B=[5 1 2005 ;2004 9 2	2;1 256 178]	:			
C1=A+B					Ξ
C2=A-B					
C3=A*B					
$A = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 2 \end{bmatrix}$	1];		Ξ		~
D= 1NV(A)					>

 $B = 0.3333 \quad 0 \quad 0.3333 \\ 0 \quad 0.3333 \quad -0.6667 \\ -0.3333 \quad 0.3333 \quad 0$

IATLAB					-X
e <u>E</u> dit <u>V</u> iew W	e <u>b W</u> indow <u>]</u>	<u>H</u> elp			
൙ X 🖻 🛍	ഗവ 🖡	🔋 🛛 📍 Cur	rent Directory:	d: WATLAB6p5/work	
kspace			N	Command Window	
: 🔚 🗊 🖭	Stack: Base	~		-0.3333 0.3333 0	^
e	Size	Bytes	Class	\Rightarrow A=[2 1 -1:2 1 2:1 -1 1]:	
A	3x3	72	double arra	a format rat %用有理格式输出	
в	3x3	72	double arra	B=inv(A)	
C1	3x3	72	double arra		
C2	3x3	72	double arra		
СЗ	3x3	72	double arra	1/3 0 1/3	
р	1x1	8	double arra	0 1/3 -2/3	
-				-1/3 1/3 0	
			>		
Workspace	Current Di	rectory			
nmand History			×		
A*B			^		
2 1 -1;2 1 2;1 -	1 1];				
inv(A)	0.1 056 170	1.			
5 I 2005 ;2004 9 &+R	2;1 200 110	1:			
A-B					
A*B					
2 1 -1;2 1 2;1 -	1 1];				
5 1 2005 ;2004 9	2;1 256 178]:			
A+B					
A-D A*B					
2 1 -1;2 1 2;1 -	1 1];				Ξ
inv(A)					
2 1 -1;2 1 2;1 -	1 1];				
mat rat	%用有理格式	代输出			
nv (A)			~		

B = 1/3 0 1/3 0 1/3 0 1/3 -2/3 -1/3 1/3 0

五、矩阵方程的求解

1、当系数矩阵可逆或伪逆时

求解AX = B或XA = B,可用左乘或右乘 A^{-1} 的办法求解.

[运算符] \, /

[运算规则] $A \setminus B = inv(A) * B, B / A = B * inv(A)$

[调用格式] $X = A \setminus B$ 或X = B / A

例.已知矩阵
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 4 & 13 & 6 \\ 7 & 4 & 9 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 5 & -1 \end{pmatrix}, 求解$$

 $AX = B \pi XA = B$

%程序 A = [1 0 3; 4 13 6; 7 4 9]; $B = [1 \ 1 \ 0; 0 \ 2; 0 \ 5 \ -1];$ format rat X1=A BX2=B/A

X1 =		
-31/44	17/22	-21/44
-1/22	-3/11	5/22
25/44	5/66	7/44
X2 =		
-4/5	-21/10	3/5
9/5	21/10	12/5
2	13/2	3

实验报告四(1)

基于MATLAB的线性代数高级计算

▶ <u>第六部分</u> §线性方程组的求解 ▶ <u>第七部分</u> §特征值和特征向量 ▶ <u>第八部分</u> §二次型

六、方程组的求解

1、当系数矩阵可逆时

求解AX = b, 可用左乘A⁻¹的办法求解,程序同上. 2、当系数矩阵可逆性不明确时,利用 初等行变换求其唯一解或特解.

例.求方程组
$$\begin{cases} 5x_1 + 6x_2 = 1\\ x_1 + 5x_2 + 6x_3 = 0\\ x_2 + 5x_3 + 6x_4 = 0 \end{cases}$$
的唯一解或一个特解.
 $x_3 + 5x_4 = 0$
%程序1
A=[5 6 0 0;1 5 6 0;0 1 5 6;0 0 1
5];
b=[1 0 0 0]';
R_A=rank(A) %求秩
X=A\b %求解

 $\mathbf{R}_{\mathbf{A}} =$ 4 **X** = 65/211 -19/211 5/211 -1/211

%程序2

A = [5 6 0 0; 1 5 6 0; 0 1 5 6; 0 0 1]5]; $b = [1 \ 0 \ 0 \ 0]';$ %由系数矩阵和常数列构 C=[A,b];成增广矩阵C R=rref(C) %利用初等行变换将C化 成最简行

R =

所以原方程组有唯一解:

$$X = \begin{pmatrix} 65/211 \\ -19/211 \\ 5/211 \\ -1/211 \end{pmatrix}$$

3、齐次线性方程组通解的解法。

[函数命令] *null*[调用格式] *z* = *n*

z = null(A); z = null(A, 'r')

例.求方程组
$$\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0\\ 2x_1 + x_2 - 2x_3 - 2x_4 = 0 \text{的通解}.\\ x_1 - x_2 - 4x_3 - 3x_4 = 0 \end{cases}$$

%程序1-1Click $A = [1 \ 2 \ 2 \ 1; 2 \ 1 \ -2 \ -2; 1 \ -1 \ -4 \ -3];$ format rat %指定有理数格式输出 B=null(A,'r'); %求出解空间的有理基

B =

5/3 -4/3 0 1

%程序1-2 Click $A = [1 \ 2 \ 2 \ 1; 2 \ 1 \ -2 \ -2; 1 \ -1 \ -4 \ -3];$ format rat %指定有理数格式输出 B=null(A,'r'); %求出解空间的有理基 syms k1 k2 %定义符号变量 X = k1 * B(:,1) + k2 * B(:,2)%写出方程组的通解

X =

[2*k1+5/3*k2] [-2*k1-4/3*k2] [k1] [k2]

B =

所以原方程组的通解为

$$X = k_1 \begin{pmatrix} 2 \\ -2 \\ -2 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 5/\\ /3 \\ -4/\\ -\frac{4}{3} \\ 0 \\ 1 \end{pmatrix}$$

4、非齐次线性方程组通解的解法。

例.求方程组
$$\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1\\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4$$
的通解.
$$x_1 + 5x_2 - 9x_3 - 8x_4 = 0 \end{cases}$$

```
n=4;
R A=rank(A)
R B=rank(B)
format rat
                         %判断有唯一解
if R A==R B&R A==n
 X = A b
                         %判断有无穷解
elseif R A==R B&R A<n
                         %求特解
 X = A b
                     %求AX=0的基础解系
 C=null(A, 'r')
                          %判断无解
else X='equition no solve'
end
```


 $\mathbf{R}_{\mathbf{A}} = \mathbf{R}_{\mathbf{B}} =$ 2 2 Warning: Rank deficient, rank = 2 tol = 8.8373e-015. **X** = 0 0 -8/15 3/5 **C** = 3/2 -3/4 3/2 7/4 1 0 0 1

所以原方程组的通解为

A=[1 1 -3 -1;3 -1 -3 4;1 5 -9 -8]; b=[1 4 0]'; B=[A b]; C=rref(B) %求增广矩阵的行最简形,可得最简同解方程组 **C** =

-3/2 3/4 5/4 1 -3/2 -7/4 0 -1/4 0 所以原方程组的通解为 $X = k_{1} \begin{pmatrix} 3/\\ 2\\ 3/\\ 2\\ 1\\ 0 \end{pmatrix} + k_{2} \begin{pmatrix} -3/\\ -1/\\ 4\\ 7/\\ 4\\ 0\\ 1 \end{pmatrix} + \begin{pmatrix} 5/\\ -1/\\ -1/\\ 4\\ 0\\ 0 \end{pmatrix}$

七、特征值和特征向量的计算

 对于n阶方阵A,所谓A的特征值问题是: 求数λ和N维非零向量x(通常为复数), 使之满足下式:

$Ax = \lambda x$

- 则称λ为矩阵A的一个特征值(特征根), 而非零向量x为矩阵A的特征值λ所对应的 特征向量。
- 对一般的n阶方阵A,其特征值通常为复数,若A为实对称矩阵,则A的特征值为实数。

- MATLAB提供的内部函数eig可以用来计算 特征值与特征向量。eig函数的使用格式有 两种,其中常见的有*T*=eig(A)、 [\lambda,P]=eig(A),具体
- (1) T=eig(A): 由eig(A)返回方阵A的N个特 征值,构成向量T;
- (2) [P, ∧]=eig(A): 由eig(A)返回方阵A的N 个特征值,构成N阶对角阵∧,其对角线 上的N个元素即为相应的特征值,特征向 量即为N阶方阵P的对应列,且A、∧、P 满足P⁻¹AP=∧;

1.求矩阵A =
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$
的特征值和特征向量.

[函数命令] poly(A)和eig(A)和[P,Q] = eig(A) 「调用格式] k = poly(A)和t=eig(A)和[P, Q]=eig(A) %程序 Click A = [1 2 2; 2 1 - 2; -2 - 2 1];k=poly(A) T = eig(A)[P,Q] = eig(A)

k =			
1	-3	-1	
Т =			
1			
3			
-1			
P =			
-780/1351	*	-985/1393	
780/1351	985/1393	985/1393	
-780/1351	-985/1393	*	
Q =			
1	0	0	
0	3	0	
0	0	-1	
八、二次型

[P,D] = schur(A) 求一个正交矩阵P,一个对角矩阵D(其对角线上的N个元素即为相应的特征值),特征 向量即为N阶方阵P的对应列,且A、D、P 满足P⁻¹AP = D.

3、将二次型f(X1,X2,X3,X4,X5) =4*X1^2+11*X1*X2+4*X2^2+11*X2*X3+4X3^2+ 11*X3*X4+4*X4^2+11*X4*X5+4*X5^2用MATLAB 转化标准二次型。

%程序 Click

A=[4 11/2 0 0 0;11/2 4 11/2 0 0;0 11/2 4 11/2 0; 0 0 11/2 4 11/2; 0 0 0 11/2 4] format rat [P,D] = schur(A)

A =				
4	11/2	0	0	0
11/2	4	11/2	0	0
0	11/2	4	11/2	0
0	0	11/2	4	11/2
0	0	0	11/2	4
P =				
390/1351	-1/2	780/1351	1/2	-390/1351
-1/2	1/2	*	1/2	-1/2
780/1351	*	-780/1351	*	-780/1351
-1/2	-1/2	*	-1/2	-1/2
390/1351	1/2	780/1351	-1/2	-390/1351
D =				
-7991/1446	0	0	0	0
0	-3/2	0	0	0
0	0	4	0	0
0	0	0	19/2	0
0	0	0	0	19559/1446

3、化二次型f(X1,X2,X3) =4*X1^2+11*X1*X2+4*X2^2+11*X2*X3+4X3^2+ 11*X3*X4+4*X4^2+11*X4*X5+4*X5^2为标准型。

 $A = [4 \ 11/2 \ 0 \ 0 \ 0; 11/2 \ 4 \ 11/2 \ 0 \ 0; 0 \ 11/2 \ 4 \ 11/2 \ 0; 0 \ 0]$ 11/2 4 11/2; 0 0 0 11/2 4];format rat [P,D] = schur(A)syms y1 y2 y3 y4 y5; y=[y1;y2;y3;y4;y5]; x=P*y;%以有理数格式显示的正交变换 f=[y1 y2 y3 y4 y5]*D*y;%有理数格式二次型 x=vpa(x,5)%化简并保留5位有效数字的正交变换 f=vpa(f,5)%化简后的标准型

P =				
390/1351	-1/2	780/1351	1/2	-390/1351
-1/2	1/2	*	1/2	-1/2
780/1351	*	-780/1351	*	-780/1351
-1/2	-1/2	*	-1/2	-1/2
390/1351	1/2	780/1351	-1/2	-390/1351
D =				
-7991/1446	0	0	0	0
0	-3/2	0	0	0
0	0	4	0	0
0	0	0	19/2	0
0	0	0	0	19559/1446
x =				
	0.28868*y1 - 0	.5*y2 + 0.57735*y3	3 + 0.5 * y4 -	0.28868*y5
	0.5*y2 - ().5*y1 - 1.9455e-1	.6*y3 + 0.5*y	4 - 0.5*y5

 $0.5^{9}y^{2} - 0.5^{9}y^{1} - 1.9435e^{-16^{9}y^{3}} + 0.5^{9}y^{4} - 0.5^{9}y^{5}$ $0.57735^{*}y^{1} - 1.1822e^{-16^{*}y^{2}} - 0.57735^{*}y^{3} - 2.9459e^{-16^{*}y^{4}} - 0.57735^{*}y^{5}$ $1.4524e^{-16^{*}y^{3}} - 0.5^{*}y^{2} - 0.5^{*}y^{1} - 0.5^{*}y^{4} - 0.5^{*}y^{5}$ $0.28868^{*}y^{1} + 0.5^{*}y^{2} + 0.57735^{*}y^{3} - 0.5^{*}y^{4} - 0.28868^{*}y^{5}$ f =

 $-5.5263*y1^2 - 1.5*y2^2 + 4.0*y3^2 + 9.5*y4^2 + 13.526*y5^2$

4.判断矩阵A =
$$\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$
所对应的二次型的正定性.

%程序 **Click** A=[122;21-2;-2-21]; [VD]=eig(A);%d返回的是A的特征值 if(min(D)>0) A='正定二次型' else A='非正定二次型' end A =

非正定二次型

实验报告四(2)

